注冊 | 登錄讀書好,好讀書,讀好書!
讀書網-DuShu.com
當前位置: 首頁出版圖書科學技術工業(yè)技術工業(yè)技術理論/總述納米技術原理:微系統(tǒng)中基于分子的凝聚態(tài)研究(英文影印版)

納米技術原理:微系統(tǒng)中基于分子的凝聚態(tài)研究(英文影印版)

納米技術原理:微系統(tǒng)中基于分子的凝聚態(tài)研究(英文影印版)

定 價:¥40.00

作 者: (美)曼索里
出版社: 復旦大學出版社
叢編項:
標 簽: 精細化工

ISBN: 9787309052060 出版時間: 2006-11-01 包裝: 平裝
開本: 32 頁數: 341 字數:  

內容簡介

  納米技術最先由諾貝爾物理學獎獲得者、著名的物理學家理查德·費曼在1959年12月29日的一次報告中提出來的。20世紀80年代,掃描探針顯微鏡發(fā)明之后,納米技術開始快速發(fā)展,現在它已成為物品設計和制作中最活躍的前沿應用領域?!都{米技術原理》就是作者根據自己37年的研究工作,在給伊利諾依(Illinois)大學的工程、生物和物理類研究生和讀過量子力學、統(tǒng)計力學的高年級大學生講課的講稿基礎上撰寫而成的?!都{米技術原理》強調在凝聚態(tài)物質的分子研究基礎上,重點介紹微系統(tǒng)的有趣課題。《納米技術原理》共分11章,分別講述原子、分子納米技術的進展;納米系統(tǒng)中分子間的作用力和勢函數;納米系統(tǒng)的熱力學和統(tǒng)計力學;納米系統(tǒng)的Monto Carlo模擬法;納米系統(tǒng)的動力學模擬法;納米系統(tǒng)的計算機模擬和最優(yōu)化;納米系統(tǒng)的相變;原子分子的定位安裝;分子自組裝;動力學組合化學;分子組裝的鳥籠結構等?!都{米技術原理》提供了豐富的進一步研究的參考文獻?!都{米技術原理》除了可用作相關專業(yè)的研究生教材和本科生選修課教材之外,還可作為有關專家了解納米系統(tǒng)學科概貌的參考讀物?!都{米技術原理》的細致解釋,一定會引起讀者的廣泛關注??紤]到納米技術是一門跨學科的交叉學科,《納米技術原理》還附上術語解釋,包括了縮略語、化學方程式、概念定義、方程和理論等方面,這將為不同學科的讀者提供閱讀的方便。

作者簡介

  曼索里,G.Ali Mansoori,美國Illinois大學生物工程和化學工程系教授、博士。作者致力于將統(tǒng)計力學和熱力學應用于化學工程和生物工程之中,研究范圍涉及重油利用、瀝青質特征、天然氣凈化、超臨界流體的提取、生物技術和環(huán)境污染等。作者已經取得了以下成果:確立了可用于工程設計計算的新的分子溶液理論、多組份混合物的相平衡理論,并將上述兩理論用于聚合物溶體、石油貯存流體、煤液化流體以及生物學流體之中;得到由極化分子或親水性分子組成的反對稱混合物的統(tǒng)計力學混合規(guī)則;提出了超臨界流體萃取和反縮聚的可能技術手段,并將這些技術手段用于天然氣的生產和加工過程之中;得出生物學分離的相平衡理論以及在從生物學流體富集生物大分子(蛋白質)過程中的應用;從石油原油中提取瀝青質的沉淀和分離技術及其在石油生產和加工過程中的應用等。作者采用了色譜法、界面張力計、沸點升高測定法以及微組分集結、膠體化、微膠粒、聚合等實驗方法和統(tǒng)計力學理論,建立了上述的技術設施?!都{米技術原理》一書是作者近年來對微系統(tǒng)進行分子研究和在凝聚態(tài)物理教學工作的基礎上編寫而成的。

圖書目錄

Preface

Chapter1—AdvancesinAtomicandMolecularNanotechnology
Introduction
TheImportanceofNanoscale
AtomicandMolecularBasisofNanotechnology
SomeRecentKeyInventionsandDiscoveries
ScanningTunnelingMicroscope
AtomicForceMicroscope
Diamondoids
Buckyballs
CarbonNanotubes
Cyclodextrins,LiposomeandMonoclonalAntibody
OngoingResearchandDevelopmentActivities
FutureProspectsinNanoscienceandNanotechnology
ConclusionsandDiscussion
SomeImportantRelatedINTERNETSites
Bibliography

Chapter2—NanosystemsIntermolecularForcesandPotentials
Introduction
CovalentandNoncovalentInteractions
InteratomicandIntermolecularPotentialEnergiesandForces
ExperimentalandTheoreticalDevelopmentofInterparticlePotentials
Step(1):AFMMeasurementandEmpiricalModeling
Step(2):TheoreticalModeling
LinearizedAugmentedPlaneWave(LAPW)
Full-PotentialLinearizedAugmentedPlaneWave(FLAPW)
Step(3):DevelopmentofNanoparticlePotentials
PhenomenologicalInteratomicandIntermolecularPotentials
1.InteratomicPotentialsforMetallicSystems
1.1.TheMany-BodyEmbedded-AtomModel(EAM)Potentials
1.2.TheMany-BodyFinnisandSinclair(FS)Potentials
1.3.TheMany-BodySuttonandChen(SC)Long-RangePotentials
1.4.TheMany-BodyMurrell-Mottram(MM)Potential
1.5.TheMany-BodyRafii-TabarandSutton(RTS)Long-RangeAlloyPotentials
1.6.Angular-DependentPotentials
2.InteratomicPotentialsforCovalently-BondingSystems
2.1.TheTersoffMany-BodyC-C,Si-SiandC-SiPotentials
2.2.TheBrenner-Tersoff-TypeFirstGenerationHydrocarbonPotentials
2.3.TheBrenner-Tersoff-TypeSecondGenerationHydrocarbonPotentials
3.InteratomicPotentialforC-CNon-CovalentSystems
3.1.TheLennard-JonesandKiharaPotentials
3.2.Theexp-6Potential
3.3.TheRuoff-HickmanPotential
4.InteratomicPotentialforMetal-CarbonSystem
5.Atomic-SiteStressField
ConclusionsandDiscussion
Bibliography

Chapter3—ThermodynamicsandStatisticalMechanicsofSmallSystems
Introduction
ThermodynamicSystemsinNanoscale
Energy,HeatandWorkinNanosystems
LawsofThermodynamics
TheZerothLaw
TheFirstLaw
TheSecondLaw
TheThirdLaw
StatisticalMechanicsofSmallSystems
ThermodynamicsandStatisticalMechanicsofNonextensiveSystems
Euler'sTheoremofHomogenousFunctions
BoltzmannandBoltzmann-GibbsFormulaeofEntropy
TsallisFormulaofEntropy
MicrocanonicalEnsembleforNonextensiveSystems
CanonicalEnsembleforNonextensiveSystems
ConclusionsandDiscussion
Bibliography

Chapter4—MonteCarloSimulationMethodsforNanosystems
Introduction
GeneratingRandomNumbers
GeneratingUniformlyDistributedRandomNumbersin[0,1)
GeneratingRandomNumbersin[a,b)AccordingtoaGiven
DistributionFunctionP(x)
ImportanceSampling
MonteCarloIntegrationMethod
ApplicationstoNanosystemsComposedofaFewParticles
EquilibriumStatisticalMechanicsandMonteCarloMethod
TheMarkovProcess
ChoiceoftheTransitionFunction
Example
AcceptanceRatiosandChoiceoftheMoves
OtherTrickstoImprovetheSimulationSpeed
ApplicationofMonteCarlotoNonequilibriumProblems
TheLangevinEquation
InteractingSystems
ConclusionsandDiscussion
Bibliography

Chapter5—MolecularDynamicsSimulationMethodsforNanosystems
Introduction
PrinciplesofMDSimulationofNanosystems
IntegrationofNewtonEquationofMotion
1.TheVeletMethod
2.TheLeap-FrogMethod
3.TheVelocity-VerletMethod
4.TheGearPredictor-CorrectorMethod
ChoiceoftheTimeIncrementAt
MDSimulationofSystemsinContactwithaHeatBath:Thermostats
1.VelocityScalingThermostat
2.TheNose-HooverExtended-SystemThermostat
3.TheLangevinThermostat
CalculationsResultingfromMDSimulations
ConclusionsandDiscussion
Bibliography

Chapter6—Computer-BasedSimulationsandOptimizationsforNanosystems
Introduction
A.ClassificationofSimulationMethodsBasedonAccuracyandComputationalTime
MethodswiththeHighestDegreeofAccuracy(VeryCPU-Intensive)
MethodswiththeSecondHighestDegreeofAccuracy
Semi-EmpiricalMethods
StochasticMethods
B.ClassificationofOptimizationsinMolecularSimulations
LocalOptimizationMethods
1.SteepestDescentMethod(SDM)
2.DampedNewtonianDynamicsMethod
3.ConjugateGradientsMethod(CGM)
4.Quasi-NewtonMethods
GlobalOptimizationMethods
1.SimulatedAnnealingMethod
2.GeneticAlgorithm
ConclusionsandDiscussion
Bibliography

Chapter7—PhaseTransitionsinNanosystems
Introduction
TheGibbsPhaseRule
PhaseTransitions
AComparisonofPhaseTransitionsBetweenSmallandLargeSystems
Fragmentation
ExperimentalObservationsofPhaseTransitionsinSmallSystems
1.EvaporationofWaterinaSealedNanotube
2.MicellizationandCoacervation
3.AnExampleofCrystallization
ConclusionsandDiscussion
Bibliography

Chapter8—PositionalAssemblyofAtomsandMolecules
Introduction
Positional(orRobotic)Assembly
ScanningProbeMicroscopy
1.Topografiner
2.QuantumMechanicalTunnelingEffect
3.PiezoelectricPhenomena
4.ScanningTunnelingMicroscope(STM)
5.ElectronicsFeedbackLoop
6.AtomicForceMicroscope(AFM)
ApplicationsofSTMforPositionalAssemblyofMolecules
ConclusionsandDiscussion
Bibliography

Chapter9—MolecularSelf-Assembly
Introduction
TheFiveFactorsResponsibleforSelf-Assembly
(1).TheRoleofMolecularBuildingBlocks(MBBs)inSelf-Assembly
(2).TheRoleofIntermolecularInteractionsinSelf-Assembly
(3).Reversibility
(4).MolecularMobility
(5).ProcessMedium
SomeExamplesofControlledSelf-Assemblies
(A).Self-AssemblyUsingSolidSurfaces-Immobilization
Techniques
(A-1).AffinityCouplingviaAntibodies
(A-2).AffinityCouplingbyBiotin-Streptavidin
(Bio-STV)SystemandItsModification
(A-3).ImmobilizedMetalIonComplexation(IMIC)
(A-4).Self-AssembledMonolayer(SAM)
(A-4-1).PhysicalAdsorption
(A-4-2).InclusioninPolyelectrolytesor
ConductingPolymers
(A-4-3).InclusioninSAM
(A-4-4).Non-OrientedAttachmenttoSAM
(A-4-5).OrientedAttachmenttoSAM
(A-4-6).DirectSite-SpecificAttachmenttoGold
(A-5).StrainDirectedSelf-Assembly
(A-6).DNADirectedSelf-Assembly
(A-7).Self-AssemblyonSiliconSurfaces
(B).Self-AssemblyinFluidMedia
ConclusionsandDiscussion
Bibliography

Chapter10—DynamicCombinatorialChemistry
Introduction
DynamicCombinatorialLibrary(DCL)
ChallengesandLimitationsinDesigningaDCL
(i)TheNatureofDCLComponentsandTemplates
(ii)TheTypesofIntermolecularInteractionsinDCL
(iii)ThermodynamicConditions
(iv)MethodsofaDCLAnalysis
MolecularRecognition
SomeExamplesandApplicationsofDCL
Host-GuestChemistry
ConclusionsandDiscussion
Bibliography

Chapter11—MolecularBuildingBlocks—Diamondoids
Introduction
MolecularBuildingBlocks
Diamondoids
SomePhysicalandChemicalPropertiesofDiamondoid
Molecules
SynthesisofDiamondoids
GeneralApplicationsofDiamondoids
ApplicationofDiamondoidsasMBBs
DiamondoidsforDrugDeliveryandDrugTargeting
DNADirectedAssemblyandDNA-Adamantane-Protein
Nanostructures
DiamondoidsforHost-GuestChemistry
ConclusionsandDiscussion
Bibliography

Glossary

Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網 www.stefanvlieger.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網安備 42010302001612號