《熵、大偏差和統(tǒng)計(jì)力學(xué)》是一部教程,內(nèi)容上相對(duì)獨(dú)立,自成體系。書(shū)中大偏差的講述除了為這科目做出了巨大貢獻(xiàn),也將統(tǒng)計(jì)力學(xué)的好多方面完美結(jié)合,并且很具有數(shù)學(xué)吸引力。而且作者在沒(méi)有假設(shè)讀者具有豐富的物理知識(shí)背景下講述,使得本書(shū)能夠讓更多的讀者學(xué)習(xí)理解。每章末都附有一節(jié)注解和一節(jié)問(wèn)題,這100來(lái)道練習(xí)題,附有許多提示,使得本書(shū)更加易于學(xué)習(xí)理解。目次:(第一部分)大偏差和統(tǒng)計(jì)力學(xué):大偏差導(dǎo)論;大偏差性質(zhì)和積分漸近;大偏差和離散理想氣體;z上的鐵磁模型;zd和圓周上的磁模型;(第二部分)大偏差定理上的復(fù)雜度和證明:復(fù)函數(shù)和legendre-fenchel變換;大偏差的隨機(jī)向量;i. i. d.隨機(jī)變量的2級(jí)大偏差;i. i. d.隨機(jī)變量的3級(jí)大偏差;附錄:概率論;ii.7中兩個(gè)定理的證明;自旋系統(tǒng)中無(wú)限體積測(cè)度的等價(jià)觀點(diǎn);特殊gibbs自由能量的存在性。讀者對(duì)象:數(shù)學(xué)專(zhuān)業(yè)的研究生,教師和相關(guān)專(zhuān)業(yè)的科研人員。
作者簡(jiǎn)介
暫缺《熵、大偏差和統(tǒng)計(jì)力學(xué)》作者簡(jiǎn)介
圖書(shū)目錄
preface comments on the use of this book part i: large deviations and statistical mechanics chapter i. introduction to large deviations i.1. overview i.2. large deviations for 1.i.d. random variables with afinite state space i.3. levels-1 and 2 for coin tossing i.4. levels-1 and 2 for i.i.d. random variables with afinite state space i.5. level-3: empirical pair measure i.6. level-3: empirical process i.7. notes i.8. problems chapter ii. large deviation property and asymptotics ofintegrals ii.1. introduction ii.2. levels-l, 2, and 3 large deviations for i.i.d. randomvectors ii.3. the definition of large deviation property ii.4. statement of large deviation properties for levels-l,2, and 3 ii.5. contraction principles ii.6. large deviation property for random vectors andexponential convergence ii.7. varadhan's theorem on the asymptotics ofintegrals ii.8. notes ii.9. problems chapter iii. large deviations and the discrete ideal gas iii.1. introduction iii.2. physics prelude: thermodynamics iii.3. the discrete ideal gas and the microcanonicalensemble iii.4. thermodynamic limit, exponential convergence, andequilibrium values iii.5. the maxweli-boltzmann distribution andtemperature iii.6. the canonical ensemble and its equivalence with themicrocanonical ensemble iii.7. a derivation of a thermodynamic equation ill.8. the gibbs variational formula and principle iii.9. notes iii. 10. problems chapter iv. ferromagnetic models on z iv.1. introduction iv.2. an overview of ferromagnetic models iv.3. finite-volume gibbs states on 77 iv.4. spontaneous magnetization for the curie-weissmodel iv.5. spontaneous magnetization for general ferromagnetson iv.6. infinite-volume gibbs states and phasetransitions iv.7. the gibbs variational formula and principle iv.8. notes iv.9. problems chapter v. magnetic models on 7/d and on the circle v.1. introduction v.2. finite-volume gibbs states on zd, d ≥ 1 v.3. moment inequalities v.4. properties of the magnetization and the gibbs freeenergy v.5. spontaneous magnetization on z, d ≥ 2, via the peierlsargument v.6. infinite-volume gibbs states and phasetransitions v.7. infinite-volume gibbs states and the central limittheorem v.8. critical phenomena and the breakdown of the centrallimit theorem v.9. three faces of the curie-weiss model v. 10. the circle model and random waves v.11. a postscript on magnetic models v.12. notes v.13. problems part ii: convexity and proofs of large deviation theorems chapter vi. convex functions and the legendre-fencheltransform vii.1. introduction vi.2. basic definitions vi.3. properties of convex functions vi.4. a one-dimensional example pf the legendre-fencheltransform vi.5. the legendre-fenchel transform for convex functions onra vi.6. notes vi.7. problems chapter vii. large deviations for random vectors vii. i. statement of results vii.2. properties of i vii.3. proof of the large deviation bounds for d = 1 vii.4. proof of the large deviation bounds for d≥ 1 vii.5. level-i large deviations for i.i.d. randomvectors vii.6. exponential convergence and proof of theoremii.6.3 vii.7. notes vii.8. problems chapter viii. level-2 large deviations for i.i.d. randomvectors viii. 1. introduction viii.2. the level-2 large deviation theorem viii.3. the contraction principle relating levels-i and 2 (d= 1) viii.4. the contraction principle relating levels-1 and 2 (d≥ 2) viii.5. notes viii.6. problems chapter ix. level-3 large deviations for i.i.d. randomvectors ix. 1. statement of results ix.2. properties of the level-3 entropy function ix.3. contraction principles ix.4. proof of the level-3 large deviation bounds ix.5. notes ix.6. problems appendices appendix a: probability a.1. introduction a.2. measurability a.3. product spaces a.4. probability measures and expectation a.5. convergence of random vectors a.6. conditional expectation, conditional probability, andregular conditional distribution a.7. the koimogorov existence theorem a.8. weak convergence of probability measures on a metricspace a.9. the space ms((rd)z) and the ergodic theorem a.10. n-dependent markov chains a.11. probability measures on the space { 1, - 1}zd appendix b: proofs of two theorems in section ii.7 b.i. proof of theorem ii.7.1 b.2. proof of theorem ii.7.2 appendix c: equivalent notions of infinite-volume measures for spinsystems c.i. introduction c.2. two-body interactions and infinite-volume gibbsstates c.3. many-body interactions and infinite-volume gibbsstates c.4. dlr states c.5. the gibbs variational formula and principle c.6. solution of the gibbs variational formula forfinite-range interactions on z appendix d: existence of the specific gibbs free energy d.1. existence along hypercubes d.2. an extension list of frequently used symbols references author index subject index