注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)防射和韋爾幾何應(yīng)用(英文)

防射和韋爾幾何應(yīng)用(英文)

防射和韋爾幾何應(yīng)用(英文)

定 價(jià):¥58.00

作 者: [西] 愛(ài)德華多.加西亞-里奧 著
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787560392011 出版時(shí)間: 2021-01-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 191 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)主要介紹了仿射和外爾幾何的應(yīng)用。全書(shū)共分四章內(nèi)容,主要研究了Walker結(jié)構(gòu)、黎曼擴(kuò)張等。第一章對(duì)基本的概念進(jìn)行了全面的介紹;第二章和第三章研究了與流形上的仿射結(jié)構(gòu)相關(guān)的各種黎曼擴(kuò)張及其余切束上中性特征的相應(yīng)度量,它們?cè)谏婕扒仕惴墓庾V幾何和表面上的均勻連接的各種問(wèn)題中發(fā)揮作用;第四章討論了Kahler-Weyl流形,它在某種意義上介于仿射幾何和Kahler-Weyl幾何之間。本書(shū)由淺入深,詳略得當(dāng),條理清晰,適合相關(guān)專(zhuān)業(yè)的高等院校師生參考閱讀。

作者簡(jiǎn)介

暫缺《防射和韋爾幾何應(yīng)用(英文)》作者簡(jiǎn)介

圖書(shū)目錄

Preface
Acknowledgments
1 Basic Notions and Concepts
1.1 Basic Manifold Theory
1.2 Connections
1.3 Curvature Models in the Real Setting
1.4 Kaihler Geometry
1.5 Curvature Decompositions
1.6 Walker Structures
1.7 Metrics on the Cotangent Bundle
1.8 Self-dual Walker Metrics
1.9 Recurrent Curvature
1.10 Constant Curvature
1.11 The Spectral Geometry of the Curvature Tensor
2 The Geometry of Deformed Riemannian Extensions
2.1 Basic Notational Conventions
2.2 Examples ofAffine Osserman Ivanov-Petrova Manifolds
2.3 The Spectral Geometry of the Curvature Tensor of Affine Surfaces
2.4 Homogeneous 2-Dimensional Affine Surfaces
2.5 The Spectral Geometry of the Curvature Tensor of Deformed Riemannian
Extensions
3 The Geometry of Modified Riemannian Extensions
3.1 Four-dimensional Osserman Manifolds and Models
3.2 para-KShler Manifolds of Constant para-holomorphic Sectional Curvature .
3.3 Higher-dimensional Osserman Metrics
3.4 Osserman Metrics with Non-trivial Jordan Normal Form
3.5 (Semi) para-complex Osserman Manifolds
4 (para)-Kahler-Weyl Manifolds
4.1 Notational Conventions
4.2 (para)-Kaihler-Weyl Structures ifm □ 6
4.3 (para)-Kaihler-Weyl Structures ifm = 4
4.4 (para)-Kaihler-Weyl Lie Groups ifm = 4
4.5 (para)-Kaihler-Weyl Tensors if m = 4
4.6 Realizability of (para)-Kahler-Weyl Tensors if m = 4
Bibliography
Authors' Biographies
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) www.stefanvlieger.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)